weitere Produkte:


Cool Mate

Synthese Mars



Produktflyer Cool Mate (pdf)

Anwendung mit dem CoolMate bei 25 °C Reaktionstemperatur mit 250 W Mikrowellen-Energieeinstrahlung: Development of a Robust and High Throughput Method for Profiling N-Linked Glycans Derived from Plasma Glycoproteins by NanoLC-FTICR Mass Sprectrometry (pdf)

Veröffentlichung zum Thema des Discover CoolMate (pdf)

Microwave Activation of Enzymatic Catalysis (pdf)

Transglycosylation bei 30 °C "Synthesis of UDP-activated Oligosaccharides with Commercial 13-galactosidase from Bacillus circulans under Microwave Irradiation", C. Kamerke, M. Pattky, C. Huhn, L. Elling, Journal of Molecular Catalysis B: Enzymatic (2010), (PDF)

Synthesis of Ara-Neplanocin A Analogues at Sub-Ambient Temperatures Using Microwave Irradiation (PDF)

Cool Mate

Biokatalyse, Enzymreaktionen, Glycolysation, Hydrolasen, Kohlenhydratchemie, Butyllithium-Reaktionen und Asymmetrische Reaktionen in der "kalten" Mikrowelle (von - 80 °C bis 70 °C)

Das Mikrowellen-Synthesesystem Cool Mate nutzt die Mikrowellenenergie zur Aktivierung der Reaktionen im "Subambient Temperatur" Bereich sowie bei Raumtemperatur und erhöhter Raumtemperatur (von - 80 °C bis 70 °C). Die entstehende Wärme wird mit einem speziellen mikrowellentransparenten Kühlmedium abgeführt, so das Reaktionstemperaturen im gewünschten Temperaturbereich gehalten werden können. Die Temperaturführung erfolgt mittels faseroptischer Sonde direkt in der Reaktionslösung. Der Reaktionsbehälter ist doppelwandig konstruiert und ermöglicht so die Zuführung von Mikrowellenenergie bei gleichzeitiger Kühlung.

Aufbau des Coolmate

Die Montage des Coolmate mit dem Mikrowellengerät Discover ist ganz einfach. Den doppelwandigen Reaktionsbehälter ins Discover stecken und die Kühlung starten. Beim Erreichen der Solltemperatur startet die gewünschte Reaktion ganz automatisch.

Wir präsentierten eine Studie über die Tieftemperatursynthesen in der Mikrowelle auf dem 227.ACS Meeting in Kalifornien (29.03.2004).

Sehen Sie hier die Ergebnisse... (pdf)

The work describes Cu(II)-mediated scaffold decorations on the pyrazinone scaffold. N-Arylations utilizing arylboronic acids applying the Chan-Lam protocol were successfully conducted under microwave heating (300 W) with simultaneous cooling at 0 °C using the Coolmate. Excellent yields were achieved compared to reactions at rt or elevated temperatures, respectively.

Copper Mediated Cross-Coupling of Arylboronic Acids and 2(1H)-Pyrazinones Facilitated by Microwave Irradiation with Simultaneous Cooling, Organic Letters, 2006 Vol. 8, No. 9, 1863-1866 (pdf)

Veröffentlichungen zum Einsatz des Discover Coolmate

1 Yoshimura, Y., Shimizu, H., Hinou, H., and Nishimura, S.-I. (2005) A novel glycosylation concept; microwave-assisted acetal-exchange type glycosylations from methyl glycosides as donors, Tetrahedron Lett. 46 , 4701-4705.

2 Rodríguez, B., and Bolm, C. (2006) Thermal Effects in the Organocatalytic Asymmetric Mannich Reaction, J. Org. Chem. 71 , 2888-2891.

3 Singh, B. K., Appukkuttan, P., Claerhout, S., Parmar, V. S., and Van der Eycken, E. (2006) Copper(II)- Mediated Cross-Coupling of Arylboronic Acids and 2(1H)-Pyrazinones Facilitated by Microwave Irradiation with Simultaneous Cooling, Org. Lett. 8 , 1863-1866.

4 Bagley, M. C., Lubinu, M. C., and Mason, C. (2007) Regioselective Microwave-Assisted Synthesis of Substituted Pyrazoles from Ethynyl Ketones, Synlett , 704-708.

5 Hosseini, M., Stiasni, N., Barbieri, V., and Kappe, C. O. (2007) Microwave-Assisted Asymmetric Organocatalysis. A Probe for Nonthermal Microwave Effects and the Concept of Simultaneous Cooling, J. Org. Chem. 72 , 1417-1424.

6 Leadbeater, N. E., Stencel, L. M., and Wood, E. C. (2007) Probing the effects of microwave irradiation on enzyme-catalysed organic transformations: the case of lipase-catalysed transesterification reactions, Org. Biomol. Chem. 5 , 1052-1055.

7 Merritt, E. A., and Bagley, M. C. (2007) Holzapfel-Meyers-Nicolaou Modification of the Hantzsch Thiazole Synthesis, Synthesis , 3535-3541.

8 Singh, B. K., Mehta, V. P., Parmar, V. S., and Van der Eycken, E. (2007) Palladium-catalyzed copper(i)- mediated cross-coupling of arylboronic acids and 2(1H)-pyrazinones facilitated by microwave irradiation with simultaneous cooling, Org. Biomol. Chem. 5 , 2962-2965.

9 Ferlin, N., Duchet, L., Kovensky, J., and Grand, E. (2008) Microwave-assisted synthesis of long-chain alkyl glucopyranosides, Carbohydr. Res. 343 , 2819-2821.

10 Shimizu, H., Yoshimura, Y., Hinou, H., and Nishimura, S.-I. (2008) A new glycosylation method part 3: study of microwave effects at low temperatures to control reaction pathways and reduce byproducts, Tetrahedron 64 , 10091-10096.

11 Singh, B. K., Parmar, V. S., and Van der Eycken, E. (2008) Rapid Palladium-Catalyzed C3-Arylation of 2(1H)-Pyrazinones: Effect of Simultaneous Cooling on Microwave-Assisted Reactions on Solid Support, Synlett , 3021-3025.

12 Young, D. D., Nichols, J., Kelly, R. M., and Deiters, A. (2008) Microwave Activation of Enzymatic Catalysis, J. Am. Chem. Soc. 130 , 10048-10049.

13 Al-Mousawi, S., and El-Apasery, M. (2009) Azolyacetones as Precursors to Indoles and Naphthofurans Facilitated by Microwave Irradiation with Simultaneous Cooling, Molecules

14 , 2976-2984. 14 Bereman, M. S., Young, D. D., Deiters, A., and Muddiman, D. C. (2009) Development of a Robust and High Throughput Method for Profiling N-Linked Glycans Derived from Plasma Glycoproteins by NanoLC-FTICR Mass Spectrometry, J. Proteome Res. 8 , 3764-3770.

15 Edwards, W. F., Young, D. D., and Deiters, A. (2009) The effect of microwave irradiation on DNA hybridization, Org. Biomol. Chem. 7 , 2506-2508.

16 Guryanov, I., Montellano Lopez, A., Carraro, M., Da Ros, T., Scorrano, G., Maggini, M., Prato, M., and Bonchio, M. (2009) Metal-free, retro-cycloaddition of fulleropyrrolidines in ionic liquids under microwave irradiation, Chem. Commun. , 3940-3942.

17 Landge, S., and Török, B. (2009) Highly Enantioselective Organocatalytic Addition of Ethyl Trifluoropyruvate to Ketones with Subzero Temperature Microwave Activation, Catal. Lett. 131 , 432- 439.

18 Radi, M., Rao, J. R., Jha, A. K., and Chu, C. K. (2009) A Convergent Approach for the Synthesis of Ara- Neplanocin a Analogues Under Subzero Microwave Assisted Conditions, Nucleosides, Nucleotides Nucleic Acids 28 , 504-518.

19 Wang, A., Wang, M., Wang, Q., Chen, F., Zhang, F., Li, H., Zeng, Z., and Xie, T. (2011) Stable and efficient immobilization technique of aldolase under consecutive microwave irradiation at low temperature, Bioresour. Technol. 102 , 469-474.

20 Lopez-Andarias, J., Guerra, J., Castaneda, G., Merino, S., Cena, V., and Sanchez-Verdu, P. (2012) Development of Microwave-Assisted Reactions for PAMAM Dendrimer Synthesis, Eur. J. Org. Chem. , 2331-2337.

21 Nicho, M. E., Garcia-Escobar, C. H., Hernandez-Martinez, D., Linzaga-Elizalde, I., and Cadenas-Pliego, G. Microwave-assisted synthesis of poly(3-hexylthiophene) via direct oxidation with FeCl3, Mater. Sci. Eng., B , Ahead of Print.

22 Kamerke, C., Pattky, M., Huhn, C., and Elling, L. Synthesis of UDP-activated Oligosaccharides with Commercial â-galactosidase from Bacillus circulans under Microwave Irradiation, J. Mol. Catal. B: Enzym.

The potential of the hyperthermophilic ?-glycosidase from Pyrococcus woesei (DSM 3773) for the synthesis of glycosides under microwave irradiation (MWI) at low temperatures was investigated. Transgalactosylation reactions with ?-N-acetyl-d-glucosamine as acceptor substrate (GlcNAc-linker-tBoc) under thermal heating (TH, 85 °C) and under MWI at 100 and 300 W resulted in the formation of (Gal?(1,4)GlcNAc-linker-tBoc) as the main product in all reactions. Most importantly, MWI at temperatures far below the temperature optimum of the hyperthermophilic glycosidase led to higher product yields with only minor amounts of side products ?(1,6-linked disaccharide and trisaccharides). At high acceptor concentrations (50 mM), transgalactosylation reactions under MWI at 300 W gave similar product yields when compared to TH at 85 °C. In summary, we demonstrate that MWI is useful as a novel experimental set-up for the synthesis of defined galacto-oligosaccharides. In conclusion, glycosylation reactions under MWI at low temperatures have the potential as a general strategy for regioselective glycosylation reactions of hyperthermophilic glycosidases using heat-labile acceptor or donor substrates.

Henze, M., Merker, D., & Elling, L. (2016). Microwave-Assisted Synthesis of Glycoconjugates by Transgalactosylation with Recombinant Thermostable a-Glycosidase from Pyrococcus. International Journal of Molecular Sciences, 17(2)